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Abstract. Technological innovation is changing private markets around the world. 
New advances in digital technology have created new opportunities for subtle and 
evasive forms of anticompetitive behavior by private firms. But some of these same 
technological advances could also help antitrust regulators improve their 
performance in detecting and responding to unlawful private conduct. We foresee 
that the growing digital complexity of the marketplace will necessitate that 
antitrust authorities increasingly rely on machine-learning algorithms to oversee 
market behavior. In making this transition, authorities will need to meet several 
key institutional challenges—building organizational capacity, avoiding legal 
pitfalls, and establishing public trust—to ensure successful implementation of 
antitrust by algorithm. 
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Introduction 
 

Markets are changing around the world. Technological innovation produces a 
steady stream of new products and services that are disrupting old patterns of 
economic activity and delivering new value to consumers. At the same time, many of 
these technologies are also creating new opportunities for rent-seeking behavior by 
firms. With the rapid pace of innovation, the rise of a small number of big technology 
firms, and the creation of new ways for companies to collude and evade regulators, 
the nature of antitrust law and its enforcement will also surely change in the years 
ahead. Rapid changes in the marketplace bring with them increases in public 
clamoring and calls for legislative action to rein in big tech firms. These 
developments also present regulators with new reasons to explore using 
technological innovations to enhance their own performance in overseeing private 
market activity. 

 
We cannot forecast exactly what direction the substance of antitrust law will 

take in the years to come, nor do we take any normative position here on what that 
substantive direction should be. But we do foresee a shift in antitrust regulators’ 
own use of technology, and we articulate here why antitrust regulators can and 
should do more to expand their reliance on artificial intelligence (AI) tools to 
undertake their work.1 Simply put, we argue that to keep pace with the changing 
technologically advanced market landscape, antitrust authorities need to enhance 
their internal capacities both to monitor and analyze markets with speed and 
accuracy and to identify potential regulatory violations in need of investigatory 
scrutiny.2 In the years ahead, antitrust regulators will increasingly turn to what we 
might call antitrust by algorithm. 

 
We begin in Part I by highlighting how digital technologies, including advances 

in the use of sophisticated algorithms, have created new opportunities for subtle 
and evasive forms of anticompetitive behavior by private firms. In Part II, we show 
how the growing digital complexity of the private marketplace will lead antitrust 
regulators to rely on many of the same kinds of technologies as private firms do—
but instead to advance regulatory purposes, such as detecting anticompetitive 
behavior and allocating limited enforcement resources. We conclude in Part III 
that successfully pursuing antitrust by algorithm will require that antitrust 
regulators confront key institutional challenges in the years ahead, building up 
their technological and human capital to ensure that they use algorithmic tools 
effectively in ways that avoid legal vulnerabilities and that ensure public trust and 
confidence in these tools. 

 
I. Antitrust in an Algorithmic Marketplace 

 
For many decades after the enactment of major antitrust laws in the United 

States and other major economies, it appeared that regulatory organizations could 

 
1 Thibault Schrepel, Computational Antitrust: An Introduction and Research Agenda, 1 STAN. J. 
COMPUTATIONAL ANTITRUST 1 (2021). 
2 A similar argument, but for regulators more generally, can be found in Cary Coglianese, Optimizing 
Regulation for the Optimizing Economy, 4 J. PUB. AFFS. 1 (2018). 
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3 “Antitrust by Algorithm” 

oversee the pace of change in the economic marketplace if they simply hired more 
staff members. Indeed, the most well-regarded antitrust authorities around the 
world also tend to be the largest.3 

 
But in recent years, the nature and pace of change in marketplaces around the 

world has dramatically shifted to a point where simply hiring more experts may 
not be enough. Markets have transformed along many dimensions. E-commerce, 
for example, has become a mainstay within the retail marketplace. Firms have 
increasingly adopted automated systems to set prices and track business 
transactions. Market conduct is progressively complex and rapidly changing, and 
markets have become increasingly more networked and collaborative.4  

 
Although antitrust officials have long sought to rely on careful, sophisticated 

analysis of competition and consumer welfare, now they must seek to fulfill their 
responsibilities in the face of firm behavior that can fluctuate rapidly and subtly 
through algorithms, such as with the use of finely differentiated pricing, digital 
transactions, and new forms of industrial organization.5 

 
In this new marketplace emerging around the world, firms in the private sector 

are conducting a greater number of transactions with more complex structures. An 
upwards global trend has arisen in the number of mergers and acquisitions across 
an array of sectors, including pharmaceuticals, media and entertainment, and 
digital services.6 Firms, universities, and startups are all entering more technology 
transfer agreements.7  

 
In addition, studies report an increase in deal complexity as firms hunt for ways 

to create value in a crowded market.8 Agreements now often involve carve-outs, 

 
3 As the authors of a widely known ranking system of antitrust regulators around the world have 
acknowledged, “the bigger a government’s competition budget, the better the enforcement agency gets.” 
GLOB. COMPETITION REV., RATING ENFORCEMENT 2015 (June 18, 2015). See also FED. TRADE COMM’N, 
CONGRESSIONAL BUDGET JUSTIFICATION FISCAL YEAR 2022, at 49 (May 28, 2021), https://www.ftc.gov/ 
system/files/documents/reports/fy-2022-congressional-budget-justification/fy22cbj.pdf (the Federal 
Trade Commission in the United States has about 600 personnel devoted to antitrust matters); U.S. 
DEP’T OF JUST., CONGRESSIONAL SUBMISSION FY 2022 PERFORMANCE BUDGET 54 (2021), 
https://www.justice.gov/jmd/page/file/1398291/download (the U.S. Department of Justice’s Antitrust 
Division comprises about 750 staff members); U.S. DEP’T OF JUST., CONG. SUBMISSION FY 2022 
PERFORMANCE BUDGET 54 (2021), EUR. COMM’N, H.R. KEY FIGURES 1 (2021), https://ec.europa.eu/ 
info/sites/default/files/european-commission-hr_key_figures_2021_en.pdf (the European Commission’s 
Directorate-General for Competition has about 850 personnel).  
4 Herbert Hovenkamp, Monopolizing and the Sherman Act (Univ. of Pa. Carey L. Sch. Inst. Law Econ., Rsch. 
Paper No. 22-02, 2022), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3963245. 
5 These changes in the marketplace would only seem to reinforce the need for sound analysis to fulfill 
what Herbert Hovenkamp calls “the first rule of rational antitrust policy: figure out who is getting hurt, 
and how.” Herbert Hovenkamp, The Looming Crisis in Antitrust Economics, 101 B.U. L. REV. 489, 544 (2021). 
6 Jennifer Rudden, Number of Merger and Acquisition (M&A) Transactions Worldwide From 1985 to 2021, 
STATISTA (Jan. 11, 2022), https://www.statista.com/statistics/267368/number-of-mergers-and-acquisitions-
worldwide-since-2005/; Anne Sraders, M&A Activity Has Already Blown Past the $2 Trillion Mark in a 
Record-Breaking 2021, FORTUNE (June 2, 2021), https://fortune.com/2021/06/02/mergers-acquisitions-2021-
m-and-a-record-year-spacs/; Orla McCaffrey, Bank Mergers are on Track to Hit Their Highest Level Since 
the Financial Crisis, WALL ST. J. (Sept. 28, 2021), https://www.wsj.com/articles/bank-mergers-are-on-track-
to-hit-their-highest-level-since-the-financial-crisis-11632793461. 
7 Dipanjan Nag, Antara Gupta & Alex Turo, The Evolution of University Technology Transfer: By the 
Numbers, IPWATCHDOG (Apr. 7, 2020), https://www.ipwatchdog.com/2020/04/07/evolution-university-
technology-transfer/id=120451/. 
8 Michael Knott, Increasingly Complex M&A in the Technology Sector Puts the Spotlight on Effective Due 
Diligence to Drive Success, FINANCIER WORLDWIDE MAG., NO. 138 (June 2014), https://www.financier 
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scale deals, and capability-driven investments, such as technology firms’ increased 
acquisition of cloud-based, mobile, online, and big data technologies.9 And the day-
to-day operation of these firms often relies heavily on data processing, including 
real-time processing of marketplace factors, automated tracking of supply chains, 
and collection of massive amounts of data on consumer preferences. Overall, in an 
economy increasingly driven by data analysis, access to and control over data 
correspondingly becomes an increasing potential source of market power.10  

 
One example of the changing landscape that has potential antitrust 

implications can be found with the growing reliance on firms’ dynamic pricing 
algorithms. Dynamic pricing refers to a set of pricing strategies aimed at increasing 
profits by adjusting the set price according to changing variables in supply and 
demand.11 When a product has limited capacity and an expiration date, technology 
now allows a firm, with relative ease, to make larger swings in prices while still 
being assured of the sale.12  

 
Dynamic pricing strategies were introduced by American Airlines in the 1980s 

and depended upon the company’s internal management system that tracked route 
demand, number of seats, and other factors.13 These strategies reportedly yielded 
American Airlines an extra $500 million per year.14 They also offered the potential 
to yield significant gains in consumer welfare. In the context of airline prices, 
evidence indicates that consumers benefit overall when leisure travelers who make 
reservations in advance receive lower prices than business travelers who make last-
minute reservations.15 

 
Although welfare-enhancing gains may not always be realized in every 

industry,  the advancement of e-commerce and digital technology does mean that 
a wider array of firms can use dynamic pricing strategies in real time.16 Moreover, 
perfect price discrimination, which was long viewed as impossible, is now 
increasingly possible to approximate.17 In the past, traditional retailers were often 
constrained by lack of data on supply and demand, as well as simple physical 
limitations associated with the need for manually relabeling prices on products. But 

 
worldwide.com/increasingly-complex-ma-in-the-technology-sector-puts-the-spotlight-on-effective-due-
diligence#.Yd-rXRPMI-Q. 
9 Id. 
10 See Cristian Santesteban & Shayne Longpre, How Big Data Confers Market Power to Big Tech: Leveraging 
the Perspective of Data Science, 65 ANTITRUST BULL. 459 (2020). 
11 See Kaveh Waddell, The Death of Prices, AXIOS (Apr. 30, 2019), https://www.axios.com/future-of-retail-
amazon-surge-pricing-brick-and-mortar-b6a5f9fe-130f-4601-b96f-a3dc7a69b54e.html (with dynamic 
pricing systems, “prices that are constantly changing, either by time of day or by individual or by 
demographic type”); see also R. Preston McAfee & Vera te Velde, Dynamic Pricing in the Airline Industry, 
ECON. & INFO. SYS. 527 (Terrence Hendershott ed., 2007), https://mcafee.cc/Papers/PDF/DynamicPrice 
Discrimination.pdf.  
12  Id. 
13 Id. 
14 Id.  
15 See Kevin R. Williams, The Welfare Effects of Dynamic Pricing: Evidence from Airline Markets (Nat’l Bureau 
of Econ. Rsch., Working Paper No. 28989, 2021). 
16 See Le Chen, Alan Mislove & Christo Wilson, An Empirical Analysis of Algorithmic Pricing on Amazon 
Marketplace, PROC. OF THE 25TH INT’L CONF. ON WORLD WIDE WEB (2016), http://www.ccs. 
neu.edu/home/amislove/publications/Amazon-WWW.pdf. 
17 See ORG. FOR ECON. COOP. AND DEV., PRICE DISCRIMINATION, DAF/COMP(2016)15 (Oct. 13, 2016), 
https://one.oecd.org/document/DAF/COMP(2016)15/en/pdf; Axel Gautier, Ashwin Ittoo & Pieter Van 
Cleynenbreugel, AI Algorithms, Price Discrimination and Collusion: A Technological, Economic and Legal 
Perspective, 50 EUR. J.L. & ECON. 405 (2020). 
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today, e-commerce retailers can easily gather data on competitors’ prices as well as 
other variables and then effortlessly modify prices of their products numerous 
times per day.18 One study found that the price of products sold by firms using 
dynamic pricing algorithms fluctuated ten times more than human-priced 
products, and that firms using dynamic pricing algorithms accounted for one-third 
of the best-selling products sold by third parties on Amazon.19  

 
Dynamic pricing algorithms extend beyond e-commerce retailers. Uber 

employs a similar price-surging algorithm to set the price of a rideshare according 
to real-time factors such as available drivers and demand for rides.20 In times of bad 
weather or at rush hour, for instance, ride fares will be subject to a fare multiplier. 
Uber defends the practice as merely adjusting for supply and demand to prevent 
long wait times and promote ride completion rates.21 But even if an ordinary auction 
market would clear the same way—that is, increase price as buyers increased—the 
use of an algorithm allows for real-time, rapid, and perfect price discrimination. 
And even if algorithmic systems can adjust prices for legitimate reasons, they also 
allow new possibilities for anticompetitive behavior.  

 
In fact, Uber has already been sued for alleged antitrust violations related to its 

use of algorithms.22 In 2015, Uber was charged with allegations that its price-surging 
algorithm created an anticompetitive conspiracy between Uber and its drivers 
because each driver had expressly agreed with Uber to charge certain fares “with 
the clear understanding that all other Uber drivers are agreeing to charge the same 
fares.”23 With advancements in the sophistication and reach of smartphone 
technology and ridesharing applications, Uber has been able to coordinate 
agreements between “hundreds of thousands of drivers in far-flung locations” 
despite the fact that none of the drivers had communicated directly with one 
another.24 Although the arbitrator in the lawsuit ultimately decided in favor of Uber 
due to a lack of evidence of agreements among drivers to work for the same price,25 
what the district court judge wrote in that case aptly describes the challenge for 
antitrust today and into the future: “The advancement of technological means for 
the orchestration of large-scale price-fixing conspiracies need not leave antitrust 
law behind.”26 

 
18 See Chen, Mislove & Wilson, supra note 16, at 1, 9; Xuesong Zhao, Big Data and Price Discrimination, 2020 
IEEE 5TH INT’L CONF. ON CLOUD COMPUTING & BIG DATA ANALYTICS 471 (May 19, 2020), 
https://ieeexplore-ieee-org.proxy.library.upenn.edu/document/9095721. 
19 Id. See also Matthew D. Ridings & Mark Butscha, Algorithms and Antitrust Law: The Only Winning Move 
is Not to Play, THOMPSON HINE (Oct. 15, 2020), https://www.doescrimepay.com/2020/10/algorithms-and-
antitrust-law-the-only-winning-move-is-not-to-play/#_ftn7. 
20 UBER, How Surge Pricing Works, https://www.uber.com/us/en/drive/driver-app/how-surge-works/ (last 
visited Oct. 11, 2021). Some commentators allege that Uber’s surge pricing will account for low battery to 
increase customers’ fares. Jessica Lindsay, Does Uber Charge More if Your Battery is Lower?, METRO (Sept. 
27, 2019), https://metro.co.uk/2019/09/27/uber-charge-battery-lower-10778303/. 
21 Jonathan Hall, Cory Kendrick & Chris Nosko, The Effects of Uber’s Surge Pricing: A Case Study, UBER 
(2015), https://eng.uber.com/research/the-effects-of-ubers-surge-pricing-a-case-study/.  
22 Meyer v. Kalanick, 174 F. Supp. 3d 817, 820, 822–24 (S.D.N.Y. 2016). 
23 Id. at 824. 
24 Id. at 825. 
25 Meyer v. Uber Techs., Inc., 868 F.3d 66 (2d Cir. 2017). 
26 Meyer, 174 F. Supp. 3d, at 826 (citing United States v. Ulbricht, 31 F. Supp. 3d 540, 559 (S.D.N.Y. 2014) 
(“[I]f there were an automated telephone line that offered others the opportunity to gather together to 
engage in narcotics trafficking by pressing ‘1,’ this would surely be powerful evidence of the button-
pusher’s agreement to enter the conspiracy. Automation is effected through a human design; here, 
Ulbricht is alleged to have been the designer of Silk Road.”). 
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Such automation via price-setting models, along with increasing access to 
comprehensive market information, presents new challenges for antitrust 
regulators. Algorithmic price-setting opens the door to a series of both intentional 
and unintentional market distortions.27 It also opens the door to possible 
efficiencies that could advance consumer welfare. But distinguishing between 
market distortions and market efficiencies will be difficult.28  

 
Furthermore, algorithmically facilitated anticompetitive conduct in multi-firm 

interactions may not always be detectable through traditional means. In some 
cases, interactions between dynamic pricing algorithms may lead to obviously 
absurd results. For example, two booksellers that both employed Amazon’s 
dynamic pricing algorithm eventually pushed the price of a used textbook to nearly 
$24 million.29 But in other cases, pricing algorithms may facilitate less dramatic but 
no less real collusive price-fixing strategies. In 2015, for instance, a Californian 
poster and framed art dealer pleaded guilty to coordinating with other art dealers 
to use price-fixing algorithms to set the price of artworks on Amazon.30 In that case, 
the defendant apparently used the algorithm as a tool in an intentional scheme to 
act anticompetitively. Similarly, in 2016, the U.K. Competition and Markets 
Authority determined that two competing sellers of licensed sports and 
entertainment posters infringed upon competition law by agreeing with one 
another that they would not undercut each other’s prices for posters sold on 
Amazon’s U.K. website—and then using automated pricing software to effectuate 
that agreement.31 In 2018, the European Commission sanctioned four electronics 
manufacturers for price-fixing in the consumer retail market.32 The manufacturers 
had used a digital algorithm to monitor retailers’ pricing to ensure it met the 
minimum price in their scheme; in turn, the retailers used an automated pricing 
system to match their competitors’ prices.33 

 
We do not mean to suggest, of course, that the use of algorithms for setting 

prices will or should be inherently suspect. Our point is simply that the increasing 
complexity of business behavior and its reliance on sophisticated digital 
technology is likely to make the antitrust regulator’s task correspondingly complex, 

 
27 Chen, Mislove & Wilson, supra note 16, at 10.  
28 ORG. FOR ECON. COOP. & DEV., PERSONALIZED PRICING IN THE DIGITAL ERA (Nov. 28, 2018), 
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DAF/COMP(2018)13&docLa
nguage=En. See also Peter Cohen, Robert Hahn, Jonathan Hall, Steven Levitt & Robert Metcalfe, Using 
Big Data to Estimate Consumer Surplus: The Case of Uber (Aug. 30, 2016), https://www.ftc.gov/system/files/ 
documents/public_comments/2018/08/ftc-2018-0048-d-0124-155312.pdf.  
29 Olivia Solon, How a Book About Flies Came to be Priced $24 Million on Amazon, WIRED (Apr. 27, 2011), 
https://www.wired.com/2011/04/amazon-flies-24-million/. 
30 U.S. DEP’T OF JUST., FORMER E-COMMERCE EXECUTIVE CHARGED WITH PRICE FIXING IN THE 
ANTITRUST DIVISION’S FIRST ONLINE MARKETPLACE PROSECUTION (Apr. 6, 2015), https://www.justice. 
gov/opa/pr/former-e-commerce-executive-charged-price-fixing-antitrust-divisions-first-online-marketplace; 
Plea Agreement, United States v. Topkins, CR-15-201 (N.D. Cal. Apr. 30, 2015), https://www.justice.gov/ 
atr/case-document/file/628891/download. 
31 COMPETITION & MKTS. AUTH., DECISION OF THE COMPETITION AND MARKETS AUTHORITY: ONLINE 
SALES OF POSTERS AND FRAMES – Case 50223 (2016), https://assets.publishing. service.gov.uk/media/ 
57ee7c2740f0b606dc000018/case-50223-final-non-confidential-infringement-decision.pdf. See generally 
ORG. FOR ECON. COOP. & DEV., ALGORITHMS AND COLLUSION—NOTE FROM THE UNITED KINGDOM (2017), 
https://one.oecd.org/document/DAF/COMP/WD(2017)19/ en/pdf.  
32 Case AT.40465 - ASUS, European Commission Decision (July 24, 2018), https://ec.europa.eu/ 
competition/antitrust/cases/dec_docs/40465/40465_337_3.pdf; see generally Rob Nicholls, Regtech as an 
Antitrust Enforcement Tool, 9 J. ANTITRUST ENF’T 135, 141–42 (2021). 
33 Case AT.40465 - ASUS, European Commission Decision (July 24, 2018), https://ec.europa.eu/competi 
tion/antitrust/cases/dec_docs/40465/40465_337_3.pdf. 
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7 “Antitrust by Algorithm” 

such that the government would benefit from the use of digital technology too.34 
Pricing algorithms represent only one private sector use of new algorithmic tools. 
Businesses may also be able to leverage algorithms in other creative but 
anticompetitive ways. For instance, just as multiple businesses might agree to no-
poach agreements with one another in order to fix compensation at artificially low 
levels,35 businesses might now use salary algorithms to effectuate similar 
compensation-fixing—and without overt evidence of agreement so long as the 
companies have not agreed with each other on the use of a single algorithm. In 
addition, much concern appears today over ways that algorithms might be used by 
platform firms to engage in subtle forms of self-preferencing behavior, which could 
well in some cases constitute unlawful anticompetitive conduct.36 Other new non-
price forms of anticompetitive behavior may arise, such as the prospect of firms 
using automated natural language processing tools to manipulate and fake online 
consumer reviews in an effort to gain a competitive advantage.37  

 
Moreover, with autonomously learning algorithms, it may not only be easier 

for business owners and managers to fulfill their anticompetitive intentions and 
actively collude in more subtle ways, but the algorithms themselves may also 
make collusive decisions independently of any human decision-maker.38 Such 
unconscious collusion may come about, for example, if firms rely on a common 
intermediary algorithm to set prices or if self-learning algorithms interact and 
learn to collude with one another.39 From the standpoint of businesses’ managers, 
algorithmically fostered anticompetitive behavior may be completely 
unconscious, even though its welfare harms would remain just as real for 
consumers.40  

 

 
34 We note, for example, that machine learning has been used successfully to identify when online 
retailers are themselves using algorithms for dynamic pricing. Chen, Mislove & Wilson, supra note 16. 
35 In re High-Tech Emp. Antitrust Litig., 985 F. Supp. 2d 1167 (N.D. Cal. 2013). 
36 See, e.g., Helena Quinn, Kate Brand & Stephan Hunt, Algorithms: Helping Competition Authorities Be 
Cognisant of the Harms, Build Their Capabilities and Act, 3 CONCURRENCES 5, 6 (2021); Daniel A. Hanley, 
How Self-Preferencing Can Violate Section 2 of the Sherman Act, COMPETITION POL’Y INT’L: CPI ANTITRUST 
CHRON. (June 15, 2021), https://www.competitionpolicyinternational.com/how-self-preferencing-can-
violate-section-2-of-the-sherman-act/; Thomas, Höppner, Maximilian Volmar & Philipp Westerhoff, 
Online Advertising: The French Competition Decision on Google's Self-Preferencing in Ad Tech, CONCURRENCES 
ECOMPETITIONS (Sept. 24, 2021), https://ssrn.com/abstract=3929310. 
37 See, e.g., Justin Johnson & D. Daniel Sokol, Understanding AI Collusion and Compliance, in THE 
CAMBRIDGE HANDBOOK OF COMPLIANCE 881, 889–92 (Benjamin van Rooij & D. Daniel Sokol, eds., 2021).  
38 Algorithms’ ability to collude autonomously should not be overstated, nor would such a circumstance 
necessarily constitute an antitrust violation under current law. See, e.g., Podcast: How Pricing Algorithms 
Learn to Collude, MIT TECH. REV. (Oct. 27, 2021), https://www.technologyreview.com/2021/10/27/ 
1038835/podcast-how-pricing-algorithms-learn-to-collude/ (“These self-learning algorithms don’t have 
understanding, much less mutual understanding, which is really what’s required in the context of the 
law.”) (quoting Joseph Harrington); Ulrich Schwalbe, Algorithms, Machine Learning, and Collusion, 14 J. 
COMPETITION L. & ECON. 568 (2018) (arguing that coordinated and tacitly collusive behavior between 
algorithms is difficult to achieve).  
39 For instance, banks may use algorithms to set their own interest rates relative to benchmark interest 
rates. If numerous banks used the same algorithm with the same objective functions, antitrust law would 
need to determine whether the banks came to an improper agreement or merely made unilateral 
decisions. See Jeff Lubitz & Grace Meyer, LIBOR-Based Financial Instrument Antitrust Action Settles at 
$21.775 Million, ISS INSIGHTS (Sept. 2, 2020), https://insights.issgovernance.com/posts/libor-based-
financial-instrument-antitrust-action-settles-at-21-775-million/. 
40 The actual likelihood of such algorithm-derived collusion is currently uncertain and debated in the 
literature. For a concise review of this literature, see Johnson & Sokol, supra note 37, at 883–85. Moreover, 
the extent to which such autonomous collusion is or should be deemed illegal remains under discussion. 
See, e.g., Joseph E. Harrington, Developing Competition Law for Collusion by Autonomous Artificial Agents, 14 
J. COMPETITION L. & ECON. 331 (2018). 
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We have presented what is far from an exhaustive list of ways that algorithms 
are likely to complicate the work of antitrust authorities around the world.41 We 
have pointed to automated pricing systems and the prevalence of other kinds of 
algorithmic market decision-making simply to illustrate how innovations in the 
private use of algorithms are likely to present new challenges for competition 
authorities.42 Private sector use of algorithms in these and other ways will likely 
make it easier for firms to evade regulators—or at least will make it harder for 
regulators to distinguish between legal and illegal conduct.43 We do not claim that 
private sector deployment of algorithms will always or even often be problematic 
under existing antitrust law in the United States or elsewhere in the world—nor 
are we taking any position on whether the substance of antitrust law necessarily 
should change in light of these technological developments. Rather, our point is 
that, under nearly any scenario of the future, algorithms will change the conduct of 
business in ways that will likely prompt governmental authorities to see it 
necessary to deploy similar algorithmic tools in overseeing the marketplace.  

 
II. Toward Antitrust by Algorithm 

 
We thus see a strong case for regulators to become more versed in using 

innovative technologies similar to those used by private firms.44 Just as algorithmic 
tools have exacerbated the complexity and dynamism of the marketplace and 
created new challenges for antitrust enforcement, these same technological 
advances may also help antitrust regulators better pinpoint potential legal 
violations.45 The new marketplace will likely put a premium on antitrust 

 
41 For a more comprehensive discussion of potential competitive and consumer harms from businesses’ 
use of algorithms, see U.K. COMPETITION & MKTS. AUTH., ALGORITHMS: HOW THEY CAN REDUCE 
COMPETITION AND HARM CONSUMERS (Jan. 19, 2021), https://www.gov.uk/government/publications/ 
algorithms-how-they-can-reduce-competition-and-harm-consumers/algorithms-how-they-can-
reduce-competition-and-harm-consumers#contents. 
42 See, e.g., Emilio Calvano, Giacomo Calzolaris, Vincenzo Denicolò & Sergio Pastorello, Artificial 
Intelligence, Algorithmic Pricing, and Collusion, 110 AM. ECON. ASSOC. REV. 3267 (2020), 
https://www.aeaweb.org/articles?id=10.1257/aer.20190623; Stephanie Assad, Robert Clark, Daniel Ershov 
& Lei Xu, Algorithmic Pricing and Competition: Empirical Evidence from the German Retail Gasoline Market 
(CESifo, Working Paper No. 8521, 2020), https://www.cesifo.org/en/publikationen/2020/working-
paper/algorithmic-pricing-and-competition-empirical-evidence-german; Joseph E. Harrington, Jr., The 
Effect of Outsourcing Pricing Algorithms on Market Competition (forthcoming), https://joeharrington5201922. 
github.io/pdf/Outsourcing%20pricing%20algorithms_21.07.19.pdf. 
43 Antitrust regulators inherently face challenges in detecting unlawful behavior because “effective 
collusion is clandestine.” William E. Kovacic, Robert C. Marshall & Michael J. Meurer, Serial Collusion 
by Multi-Product Firms, 6 J. ANTITRUST ENF’T 296, 298 (2018). But with the ability to make more fine-
grained decisions, firms’ anti-competitive behavior will likely grow harder for antitrust authorities to 
detect if they fail to enhance their own analytic capacities. For example, it has been suggested: 

If new technologies make coordinated interaction more likely, competition enforcers will 
need to focus more on coordinated effects in merger analysis at lower market 
concentration thresholds. .	.. [Algorithmic price discrimination] may increase the chances 
that a given merger will harm consumers in some relevant market even if the remaining 
post-merger competition is sufficient to protect the majority of consumers. 

Terrell McSweeny & Brian O’Dea, The Implications of Algorithmic Pricing for Coordinated Effects Analysis 
and Price Discrimination Markets in Antitrust Enforcement, 32 ANTITRUST 75, 79 (2017). 
44 As Salil Mehra has noted, “as the competition they oversee becomes more complicated, enforcement 
agencies will need to develop increased technical competence to understand new forms of algorithmic 
competition.” Salil K. Mehra, Algorithmic Competition, Collusion, and Price Discrimination, in THE 
CAMBRIDGE HANDBOOK OF THE LAW OF ALGORITHMS 199, 205 (Woodrow Barfield, ed., 2020). 
45 See Giovanna Massarotto, Using Tech to Fight Big Tech, BLOOMBERG L. (Sept. 27, 2021), https:// 
news.bloomberglaw.com/tech-and-telecom-law/using-tech-to-fight-big-tech (“Government’s adoption 
of emerging technologies would help deepen its understanding in the same technologies that now rely 
on data, and the markets it wants to oversee. The truth is that government could not think of moving 
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9 “Antitrust by Algorithm” 

authorities’ use of algorithmic tools simply to keep pace with the use of these tools 
by the private sector.46 

 
Some observers have proposed substantive changes to antitrust law that would 

impose new regulatory responsibilities on dominant firms in the new digital 
marketplace.47 Legal authorities around the world have begun to consider 
legislative and regulatory changes that would impose conduct standards and other 
affirmative obligations on firms’ use of data and digital tools in an effort to combat 
anticompetitive tendencies. 48 Some of these proposals call for increasing oversight 
of mergers in the digital sector, establishing new agencies dedicated to certain types 
of tech firms, and scrutinizing innovation and data use by dominant firms.49  

 
Other proposals call for various forms of ex ante conduct regulation, such as 

mandating data sharing for firms with bottleneck power and mandating data 
mobility and open standards for all firms.50 An amendment to the German 
Competition Act, for example, prohibits self-preferencing by dominant firms and 
imposes on them affirmative obligations of interoperability and data portability.51 It 

 
fast enough in its enforcement action without these adequate resources and tools.”); Quinn, Brand & 
Hunt, supra note 36, at 10 (“As the number and complexity of digital competition cases grow, so too does 
the need for competition agencies to have data and technology skills .	.	.	. Without data and technology 
skills, including algorithmic skills, agencies may struggle to hold dominant technology companies to 
account.”). 
46 Coglianese, Optimizing Regulation, supra note 2. 
47 See, e.g., Zev Mahari, Robert, Sandro Claudio Lera & Alex Pentland, Time for a New Antitrust Era: 
Refocusing Antitrust Law to Invigorate Competition in the 21st Century, 1 STAN. COMPUTATIONAL ANTITRUST 
52 (2021). 
48 For recent analyses and proposals from antitrust authorities around the world, see, e.g., U.K. 
COMPETITION & MKTS. AUTH., UNLOCKING DIGITAL COMPETITION (2017), https://assets. 
publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/785547/unlocking
_digital_competition_furman_review_web.pdf; AUSTL. COMPETITION & CONSUMER COMM’N, DIGITAL 
PLATFORMS INQUIRY: FINAL REPORT (2019), https://www.accc.gov.au/publications/digital-platforms-
inquiry-final-report; AUTORITÉ DE LA CONCURRENCE & BUNDESKARTELLAMT, ALGORITHMS AND 
COMPETITION (2019), https://www.autoritedelaconcurrence.fr/sites/default/files/algorithms-and-comp 
etition.pdf; COMPETITION BUREAU CAN., BIG DATA AND INNOVATION: KEY THEMES FOR COMPETITION 
POLICY IN CANADA (2018), https://www.competitionbureau.gc.ca/eic/site/cb-bc.nsf/vwapj/CB-Report-
BigData-Eng.pdf/$file/CB-Report-BigData-Eng.pdf. See generally ORG. FOR ECON. COOP. & DEV., 
ALGORITHMS AND COLLUSION: COMPETITION POLICY IN THE DIGITAL AGE (2017), http://www.oecd.org/ 
competition/algorithms-collusion-competition-policy-in-the-digital-age.htm; JACQUES CRÉMER, YVES-
ALEXANDRE DE MONTJOYE & HEIKE SCHWEITZER, EUR. COMM’N, COMPETITION POLICY FOR THE DIGITAL 
ERA (European Commission, 2019), https://ec.europa.eu/competition/ publications/reports/kd0419345 
enn.pdf; ANTITRUST L. SECTION, AM. BAR. ASS’N, ARTIFICIAL INTELLIGENCE & MACHINE LEARNING: 
EMERGING LEGAL AND SELF-REGULATORY CONSIDERATIONS, A REPORT BY THE AMERICAN BAR 
ASSOCIATION’S SECTION OF ANTITRUST: PART ONE (2019), https://www.americanbar.org/content/ 
dam/aba/administrative/antitrust_law/comments/october-2019/clean-antitrust-ai-report-pt1-093019.pdf 
[hereinafter “ABA PART ONE”]; ANTITRUST L. SECTION, AM. BAR. ASS’N, COMPETITION IMPLICATIONS OF 
BIG DATA AND ARTIFICIAL INTELLIGENCE/MACHINE LEARNING, A REPORT BY THE AMERICAN BAR 
ASSOCIATION’S SECTION OF ANTITRUST: PART TWO (2021), https://www.americanbar.org/content/ 
dam/aba/administrative/antitrust_law/comments/feb-21/aba-big-data-task-force-white-paper-part-two-
final-215.pdf.authcheckdam [hereinafter “ABA PART TWO”]. 
49 ABA PART TWO, supra note 48, at 65–66; STIGLER CTR. FOR THE STUDY OF THE ECON. & THE STATE & 
UNIV. OF CHI. BOOTH SCH. OF BUS., STIGLER COMM. ON DIGIT. PLATFORMS: FINAL REPORT (2019), 
https://www.chicagobooth.edu/-/media/research/stigler/pdfs/digital-platforms---committee-report---
stigler-center.pdf [hereinafter STIGLER CTR.]. 
50 See, e.g., STIGLER CTR., supra note 49; Press Release, Senators Introduce Bipartisan Bill to Encourage 
Competition in Social Media, MARK R. WARNER (Oct. 22, 2019), https://www.warner.senate.gov/public/ 
index.cfm/2019/10/senators-introduce-bipartisan-bill-to-encourage-competition-in-social-media; William 
P. Rogerson & Howard Shelanski, Antitrust Enforcement, Regulation, and Digital Platforms, 168 U. PA. L. 
REV. 1911, 1911–40 (2020). 
51 GESETZ GEGEN WETTBEWERBSBESCHRÄNKUNGEN [GWB] [GERMAN COMPETITION ACT], https://www. 
gesetze-im-internet.de/englisch_gwb/; see also FED. MINISTRY OF ECON. AFFS. & ENERGY, A NEW 
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also introduces a new category of market power: companies with “paramount 
significance for competition across markets,” which encompasses digital players 
that have significant influence on certain markets without having significant 
market shares in those markets.52 Dominant firms with financial strength and 
access to data relevant for competition are prohibited from conduct that creates 
self-favoring, impedes competitors by leveraging market power, uses data collected 
in a market in which it is dominant to create or increase barriers to entry in other 
markets, hinders interoperability and data portability, and provides insufficient 
information to other firms to evaluate its services.53 

 
Regardless of the precise direction that antitrust law should take in the years 

ahead—a substantive question which we do not address here—competition 
regulators will need to adapt their operations to respond better to new market 
conditions and business practices.54 Already, regulators in domains other than 
antitrust are discovering the value of big data and machine-learning algorithms for 
maximizing the impact of their limited enforcement resources.55 Digital algorithms 
are being widely used to answer a perennial challenge facing regulators: namely, 
how to allocate scarce auditing attention optimally among millions of transactions 
and thousands of firms so as to “find the needles in these haystacks, with limited 
staff.”56 For example, the U.S. Internal Revenue Service uses algorithmic tools to 
detect tax evasion57 and the Centers for Medicare and Medicaid Services uses these 
tools to identify fraud in the health care sector.58 The U.S. Securities and Exchange 
Commission also now uses machine learning to detect instances of securities fraud 

 
COMPETITION FRAMEWORK FOR THE DIGITAL ECONOMY, REPORT BY THE COMMISSION ‘COMPETITION 
LAW 4.0’ (2019), https://www.bmwi.de/Redaktion/EN/Publikationen/Wirtschaft/a-new-competition-
framework-for-the-digital-economy.pdf?blob=publicationFile&v=3. 
52 GIBSON DUNN, “Digitalization Act”: Significant Changes to German Antitrust Rules (Jan. 28, 2021), 
https://www.gibsondunn.com/digitalization-act-significant-changes-to-german-antitrust-rules/. 
53 GWB, supra note 51, at § 18, ¶ 2a–3a, § 20, ¶ 3a. 
54 See Mehra, supra note 44, at 208 (“Antitrust enforcers will have to upgrade their technical skills and 
improve their ability to gauge empirically whether algorithmically driven practices hurt consumers.”). 
It has even been suggested that, if antitrust authorities can improve their enforcement of traditional 
antitrust law using advanced technologies, this may reduce to some degree the need for adopting ex ante 
regulations. See Schrepel, supra note 1, at 13. 
55 Cary Coglianese & David Lehr, Regulating by Robot: Administrative Decision Making in the Machine-
Learning Era, 105 GEO. L.J. 1147 (2017); Cary Coglianese & Lavi Ben Dor, AI in Adjudication and 
Administration, 86 BROOKLYN L. REV. 791 (2021). 
56 Stefan Hunt, From Maps to Apps: The Power of Machine Learning and Artificial Intelligence for Regulators, 
BEESLEY LECTURE SERIES ON REGULATORY ECONOMICS (Oct. 19, 2017), https://www.fca.org.uk/ 
publication/documents/from-maps-to-apps.pdf. 
57 See U.S. DEP’T OF TREASURY, Treasury Announces IRA Integrated Modernization Business Plan 
Promoting Cost Efficiency, Improved Taxpayer Service and Protection (Apr. 18, 2019), https://home. 
treasury.gov/news/press-releases/sm663 (noting “software that completes laborious tasks in seconds 
through automation and artificial intelligence, eliminating error-prone manual work and increasing 
speed and accuracy”); U.S. TREASURY INSPECTOR GEN. FOR TAX ADMIN., The Information Reporting and 
Document Matching Case Management System Could Not Be Deployed (Sept. 29, 2014), 
https://www.treasury.gov/tigta/auditreports/2014reports/201420088fr.pdf; see also Erik Hemberg, Jacob 
Rosen, Geoff Warner, Sanith Wijesinghe & Una-May O’Reilly, Tax Non-Compliance Detection Using Co-
Evolution of Tax Evasion Risk and Audit Likelihood, PROC. 15TH INT’L CONF. ON A.I. & L. at 79 (2015), 
https://taxprof.typepad.com/files/taxpaper.pdf; Lynnley Browning, Computer Scientists Wield Artificial 
Intelligence to Battle Tax Evasion, N.Y. TIMES (Oct. 9, 2015), https://www.nytimes.com/2015/10/10/business/ 
computer-scientists-wield-artificial-intelligence-to-battle-tax-evasion.html. For a discussion of how 
other tax authorities are using AI tools, see AI TRENDS, AI Applied to Tax Systems Can Help Discover 
Shelters, Support Equality (Feb. 4, 2021), https://www.aitrends.com/ai-in-government/ai-applied-to-tax-
systems-can-help-discover-shelters-support-equality/. 
58 Edward Roche, The Audit Algorithm Arms Race in Medicare, RAC MONITOR (Sept. 2, 2020), 
https://racmonitor.com/the-audit-algorithm-arms-race-in-medicare/. 
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11 “Antitrust by Algorithm” 

and insider trading.59 A survey conducted across the U.S. federal government found 
that regulators increasingly use AI tools as a means of setting enforcement 
priorities—indeed, enforcement makes up the second largest category of use cases 
identified in the survey.60  

 
Algorithmic tools have achieved demonstrable improvements in government 

agencies’ ability to forecast accurately—which has also been the main impetus for 
deploying them in the private sector.61 For example, machine-learning algorithms 
have been found to improve the ability of environmental regulators to detect 
violations of water pollution rules by up to six times that of other methods.62 Border 
officials have used them in Greece to detect individuals with asymptomatic cases of 
COVID-19, improving the identification of such cases by more than two times 
conventional screening cases.63 They have been adopted to help in the detection of 
violations of fisheries’ bycatch limitations,64 the forecasting of recidivism in bail 
and parole decisions,65 and choices about where to send building inspectors and 
general police patrols.66 It is not hard to foresee an emerging era across government 
of increasing administrative reliance on “adjudication by algorithm” and even 
“rulemaking by robot.”67  

 
Although antitrust authorities do not appear to have moved as quickly to adopt 

AI tools as have other regulators,68 they are starting to see value in exploring ways 
to use the same kinds of innovative computational tools that other governmental 
authorities are using.69 The U.K. Competition and Markets Authority, for instance, 

 
59 DAVID FREEMAN ENGSTROM, DANIEL E. HO, CATHERINE M. SHARKEY & MARIANO-FLORENTINO 
CUÉLLAR, GOVERNMENT BY ALGORITHM: ARTIFICIAL INTELLIGENCE IN FEDERAL ADMINISTRATIVE 
AGENCIES 22–29 (2020), https://www-cdn.law.stanford.edu/wp-content/uploads/2020/02/ACUS-AI-
Report.pdf. 
60 Id. at 17. The largest category was regulatory research, analysis, and monitoring.  
61 For a review of studies showing how machine-learning algorithms can make improvements in the 
performance of governmental tasks, see Cary Coglianese & Alicia Lai, Algorithm vs. Algorithm, 72 DUKE 
L.J. 1281 (2022). See also DANIEL KAHNEMAN, OLIVIER SIBONY, CASS R. SUNSTEIN, NOISE: A FLAW IN HUMAN 
JUDGMENT (2021). 
62 See Miyuki Hino, Elinor Benami & Nina Brooks, Enhancing Environmental Monitoring Through Machine 
Learning, 1 NATURE SUSTAINABILITY 583, 583–84 (2018). 
63 See Nations can learn from Greece’s use of AI to curb COVID-19, 597 NATURE 447 (2021), 
https://media.nature.com/original/magazine-assets/d41586-021-02554-y/d41586-021-02554-y.pdf; Hamsa 
Bastini, et al., Efficient and Targeted COVID-19 Border Testing via Reinforcement Learning, 599 NATURE 108 (2021). 
64 See Richard Berk, Forecasting Consumer Safety Violations and Violators, in IMPORT SAFETY: REGULATORY 
GOVERNANCE IN THE GLOBAL ECONOMY 131 (Cary Coglianese, Adam M. Finkel & David Zaring eds., 
2009). 
65 See Richard Berk, Lawrence Sherman, Geoffrey Barnes, Ellen Kurtz & Lindsay Ahlman, Forecasting 
Murder Within a Population of Probationers and Parolees: A High Stakes Application of Statistical Learning, 172 
J. ROYAL STAT. SOC’Y SERIES A 191 (2009). 
66 See Coglianese & Lehr, supra note 55. 
67 Id.; see also LAW AS DATA: COMPUTATION, TEXT, AND THE FUTURE OF LEGAL ANALYSIS (Michael A. 
Livermore & Daniel N. Rockmore eds., 2019); OMRI BEN-SHAHAR & ARIEL PORAT, PERSONALIZED LAW: 
DIFFERENT RULES FOR DIFFERENT PEOPLE (2021). 
68 See Ai Deng, An Antitrust Lawyer's Guide to Machine Learning, 32 ANTITRUST 82, 82 (2017) (“The antitrust 
community is largely playing catch-up on technical aspects of AI and ML.”) 
69 The U.S. Department of Justice’s Antitrust Division, for example, has undertaken efforts to “increase 
the division’s capabilities and engagement in emerging technologies relevant to antitrust enforcement.” 
Press Release, Justice Department Joins Computational Antitrust Project at Stanford Law School, U.S. 
Dep’t. of Just. (Jan. 19, 2021), https://www.justice.gov/opa/pr/justice-department-joins-computational-
antitrust-project-stanford-law-school. Similarly, the European Commission has initiated research “on 
how Artificial Intelligence could potentially improve DG Competition’s processes of evidence 
management, legal drafting, and market intelligence gathering.” EUR. COMM’N: COMPETITION POL’Y, Ex-
ante publicity on low and middle value contracts, https://ec.europa.eu/competition-policy/single-
market-programme-smp/calls-tenders-contracts/ex-ante-publicity-low-and-middle-value_en (last 

Electronic copy available at: https://ssrn.com/abstract=3985553



 
 
 
 
 
 

                                   Stanford Computational Antitrust                                              VOL. 11 
      

 
 

 

12 

is pursuing the use of algorithmic techniques and other efforts “to understand how 
firms are using data, what their machine learning (ML) and AI algorithms are 
doing, the consequences of these algorithms and, ultimately, what actions 
authorities need to take.”70  

 
Interest in algorithmic tools is also growing among antitrust legal scholars who 

are identifying possible ways to supplement—or even at times supplant—traditional 
approaches to antitrust regulation and enforcement through the use of AI and 
blockchain technologies. Thibault Schrepel, for example, has issued what can be 
considered a manifesto for antitrust by algorithm, arguing that, as “markets are 
becoming increasingly complex and dynamic in today’s economy[, t]his complicates 
the task of antitrust agencies, each day a little more.”71 Schrepel explains that, 
“[a]gainst this background, the implementation of computational methods is 
becoming necessary to maintain and improve antitrust agencies’ ability to detect, 
analyze, and remedy anticompetitive practices.”72 He specifically points to the 
potential for new digital technologies to enable antitrust regulators to process vast 
quantities of data and large volumes of text more quickly and more effectively.73 He 
also argues that advances in information technology and data analytics may make 
possible substantial improvements to real-time, dynamic analyses of mergers.74 

 
The growing interest by legal scholars in the use of AI tools for antitrust 

parallels an increasing recognition by economists in the value of using more 
sophisticated, dynamic analysis to assess market competitiveness and to identify 
rent-seeking behavior.75 Economists have relied on machine learning to help 
enhance their market analyses, whether in estimating counterfactuals or solving 
dynamic games.76  

 
Of course, even with an increasing recognition of how machine learning can 

improve economic analysis, economists and government regulators will not find 
that every question can be answered best by machine learning.77 Analyses of well-

 
visited Nov. 1, 2021). In the Netherlands, authorities have developed a predictive analytics tool to identify 
sectors with potential market concentration problems. Lilian Petit, The Economic Detection Instrument of 
the Netherlands Competition Authority: The Competition Index (NMa Working Paper No. 6, 2012), 
https://ssrn.com/abstract=1992774. 
70 U.K. COMPETITION & MKTS. AUTH.: CMA BLOG, CMA’s new DaTA unit: exciting opportunities for data 
scientists (Oct. 24, 2018), https://competitionandmarkets.blog.gov.uk/2018/10/24/cmas-new-data-unit-
exciting-opportunities-for-data-scientists/. 
71 Schrepel, supra note 1, at 4. 
72 Id. 
73 Id. at 5–7. 
74 Id. at 8–9. 
75 For decades, economists have recognized the need for dynamic modeling of firms’ competitive 
behavior. Victor Aguirregabiria & Aviv Nevo, Recent Developments in Empirical IO: Dynamic Demand and 
Dynamic Games, ADVANCES IN ECONOMICS & ECONOMETRICS 53 (Daron Acemoglu, Manuel Arellano & 
Eddie Dekel eds., 2013). Economists are increasingly exploring the role that machine learning can play 
in such dynamic analysis. Victor Aguirregabiria, Allan Collard-Wexler & Stephen P. Ryan, Dynamic 
Games in Empirical Industrial Organization, ARXIV:2109.01725 [ECON.EM] (2021).  
76 Hal R. Varian, Big Data: New Tricks for Econometrics, 28 J. ECON. PERSPS. 3 (2014); Sendhil Mullainathan 
& Jan Spiess, Machine Learning: An Applied Econometric Approach, 31 J. ECON. PERSPS. 87 (2017); Susan 
Athey, The Impact of Machine Learning on Economics, in THE ECONOMICS OF ARTIFICIAL INTELLIGENCE: AN 
AGENDA (Univ. of Chicago Press, 2019); Aguirregabiria & Nevo, supra note 75, at 52–56; Feder Iskhakov, 
John Rust & Bertel Schjerning, Machine learning and structural econometrics: contrasts and synergies, 23 THE 
ECONOMETRICS J. S81 (2020). 
77 For reasons to be cautious about how much to expect machine learning can achieve in the economic 
analysis of competition, see Aguirregabiria & Nevo, supra note 75, at 52–56. 
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13 “Antitrust by Algorithm” 

studied sectors can be, and likely will still be, best approached using other analytic 
techniques.78 Moreover, data limitations will prove an impediment to the use of 
machine-learning algorithms in many contexts.  

 
Nevertheless, assuming data availability, machine learning does promise to be 

helpful for identifying patterns that deserve greater antitrust scrutiny.79 Firms 
themselves are said to find these algorithms useful to support their own internal 
compliance management systems.80 Machine-learning algorithms may be especially 
useful for public regulators in monitoring market behaviors and outcomes in newer, 
data-rich settings where existing economic theory remains limited—a category of 
business that seems only destined to grow larger in the years ahead.81 Machine 
learning is also likely to facilitate improvements in antitrust regulators’ decision-
making about how to target scarce resources for enforcement investigation.82  

 
In an increasingly complex, dynamic market environment, antitrust authorities 

will need better ways to identify problems and problematic behavior by firms. Even 
when machine-learning tools cannot by themselves support authoritative judgments 
of market concentration or anticompetitive behavior, they are likely to be able to help 
regulators determine where to look more closely by identifying anomalies in pricing 
and other market behavior, or by relying on various proxies to forecast likely 
perpetrators of collusive conduct.83 Overall, market imperatives and technological 
capabilities will increasingly point antitrust authorities toward greater reliance on the 
use of machine-learning algorithms to carry out their missions. 

 
III. Antitrust by Algorithm’s Institutional Challenges 

 
Initial exploration of the use of algorithmic tools is currently possible for many 

antitrust authorities, and some competition bodies are already starting to make 
incremental moves to enhance their reliance on computational technology.84 It is 
thus no longer difficult to imagine a qualitatively distinct future in which antitrust 

 
78 With sufficient data, of course, even the behavior of long-established lines of businesses can be 
illuminated with machine learning. See, e.g., Tianyi Wang et al., A Framework for Airfare Price Prediction: A 
Machine Learning Approach, IEEE 20TH INT’L CONF. ON INFO. REUSE & INTEGRATION FOR DATA SCI. (2019). 
79 Deng, supra note 68, at 84 (discussing how AI tools “might be used to deter and prevent cartel 
formation”). 
80 Sabine Zigelski & Lynn Robertson, What Can Make Competition Compliance Programmes Really 
Effective?, COMPETITION POL’Y INT’L: CPI ANTITRUST CHRON. (Nov. 16, 2021) (“Algorithms can support 
businesses in their monitoring, prevention and detection efforts, which can benefit from widely 
available know-how on screening for anti-competitive behaviours.”); ORG. FOR ECON. COOP. & DEV., 
COMPETITION COMPLIANCE PROGRAMMES 40 (2021), https://www.oecd.org/daf/competition/competition- 
compliance-programmes-2021.pdf (“In addition to structural, price or performance-based screens, 
companies can use Artificial Intelligence (AI) to monitor company communication for suspicious signs, 
such as keywords in competitor communication, which can lead to an early flagging of potentially 
problematic behaviour.”). See also Deputy Assistant Attorney General Matthew S. Minor, Remarks at the 
6th Annual Government Enforcement Institute, U.S. DEP’T OF JUST. (Sept. 12, 2019), https://www.justice. 
gov/opa/speech/deputy-assistant-attorney-general-matthew-s-miner-delivers-remarks-6th-annual-government 
(noting that in the enforcement setting prosecutors in financial cases will ask “about what the company 
has done to analyze or track its own data resources”). 
81 Cf. Massarotto, supra note 45. 
82 See, e.g., Nicholls, supra note 32; Giovanna Massarotto & Ashwin Ittoo, Gleaning Insight from Antitrust 
Cases Using Machine Learning, 1 STAN. COMPUTATIONAL ANTITRUST 16 (2021); Martin Huber & David 
Imhof, Machine Learning with Screens for Detecting Bid-Rigging Cartels, 65 INT’L J. INDUS. ORG. 277 (2019). 
83 Joseph E. Harrington, Jr., Detecting Cartels, in HANDBOOK OF ANTITRUST ECONOMICS 213, 252 (2006) 
(suggesting value in finding “new empirical methods for picking up structural change and statistical 
anomalies . . . for identifying markets worthy of closer scrutiny”). 
84 Massarotto & Ittoo, supra note 82. 
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regulators, as with regulators more generally, come to rely much more extensively 
on machine learning to automate tasks and functions currently handled by 
humans.85 Indeed, for the reasons we have outlined, it seems apparent that moving 
toward substantial reliance on artificial intelligence to oversee market behavior—
that is, toward antitrust by algorithm—will be a sensible strategy if authorities are 
to fulfill antitrust’s goals in a marketplace driven itself by algorithms. But making 
significant changes to reorganize and reconceive antitrust oversight in an 
algorithmic era will not be easy. As we have noted, antitrust authorities may well 
need to be given new legislative authorities and the substantive nature of antitrust 
law may need to be rewritten to some degree.86 Regardless of any substantive 
changes to the law, antitrust bodies will also need the leadership vision and 
resources to overcome a series of institutional challenges in making a transition to 
antitrust by algorithm. 

 
As much as the rationale for antitrust authorities’ pursuit of machine learning 

can be readily understood in general terms given changes in market dynamics, the 
managers of antitrust authorities will need to make a series of concrete decisions 
about exactly when and for what purposes to use specific kinds of algorithmic tools, 
as well as how those tools should be designed and deployed. In making these 
decisions, managers should obviously focus in the first instance on whether the use 
of algorithmic tools will improve their organizations’ performance in terms of 
fulfilling their market oversight missions. Especially if automated tools are to 
replace humans in the performance of certain tasks or functions, the guiding 
question should be whether the digital algorithms can perform better than trained 
humans—with “better” operationalized in terms of outcomes specified by the 
antitrust organization’s leaders, including increased accuracy and speed in spotting 
collusion or other rent-seeking behavior.87  

 
A variety of factors will affect machine-learning algorithms’ performance at 

tasks within antitrust organizations. Some factors are inherent in how algorithms 
function: they require large volumes of reliable and relevant data along with well-
specified, mathematically stated goals.88 If these inherent preconditions for using 
algorithmic tools cannot be met, then antitrust authorities will not be able to deploy 
them to their advantage. For example, in situations where market conditions are 
rapidly changing, it will be imperative for the antitrust regulator to have a steady 
supply of current data, or else the algorithm will suffer from “brittleness”—a 
problem of external validity.89  

 
In noting the need for data, we do not mean to suggest that the amount of—or 

even the currency of—data available to antitrust authorities will be an exogenous 

 
85 Coglianese & Lehr, supra note 55. 
86 See supra Part II. 
87 Coglianese & Lai, supra note 61. 
88 For discussion of the importance of goal precision in the context of the analysis of mergers, see 
Anthony J. Casey & Anthony Niblett, Micro-Directives and Computational Merger Review, 1 STAN. J. 
COMPUTATIONAL ANTITRUST 132 (2021). See generally Cary Coglianese, Algorithmic Regulation: Machine 
Learning as a Governance Tool, in MARC SCHUILENBURG & RIK PEETERS, EDS., THE ALGORITHMIC 
SOCIETY: TECHNOLOGY, POWER, AND KNOWLEDGE 35, 47–49 (2021); Coglianese & Lehr, supra note 55, 
at 1215 n. 283, 1218. 
89 Of course, it bears noting that if conditions are indeed rapidly changing, then relying on 
traditional tools may well be even more brittle, with machine learning still performing 
comparatively better. 
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15 “Antitrust by Algorithm” 

condition out of an antitrust authority’s control. On the contrary, data availability, 
like other resources, may be adjustable and will be just one of the institutional 
challenges that authorities will face in shifting toward an era of antitrust by 
algorithm. Overall, authorities will need to address three types of institutional 
challenges which we identify in this final part of this paper: (a) building their 
organizations’ capacities to make effective and responsible use of advances in 
predictive analytics; (b) avoiding legal pitfalls and challenges to governmental 
reliance on artificial intelligence; and (c) ensuring public confidence and trust in 
their use of algorithmic tools. These institutional challenges are interconnected. 
Antitrust authorities will need to build sufficient organizational capacity if they are 
to use artificial intelligence tools responsibly, which will help in building trust and 
overcoming any legal challenges. 

 
A – Building Organizational Capacity 
 

Data availability will be the first organizational capacity hurdle that antitrust 
authorities must overcome. If antitrust by algorithm is justified by the rapid pace of 
market activity—including activity driven itself by private actors’ use of 
algorithms—then antitrust regulators will almost surely need data access at a speed 
that mirrors the market activity the regulators are seeking to oversee. To obtain this 
access, antitrust officials could insist on including real-time sharing of digital data 
on a case-by-case basis as part of the settlement agreements they negotiate in 
enforcement actions taken against firms.90 More generally, some firms might be 
persuaded to provide such data access voluntarily on a regular basis.91 But perhaps 
more likely, legislatures or antitrust agencies will need to establish legal 
requirements for data-sharing to ensure that all firms provide necessary data access 
to antitrust authorities.92 

 
Access to necessary data, though, is only part of the overall capacity needed by 

antitrust organizations if they are to transform significantly in their reliance on 
artificial intelligence. Organizations also need hardware and cloud computing 
capacity to store and analyze these massive quantities of data. Although the 
dramatic advances in computing power in recent decades are precisely what have 
made the machine-learning revolution feasible, many governmental IT systems 
nevertheless remain significantly older, even antiquated.93 Moreover, governments 
not only need up-to-date hardware for data storage and analysis; they also need to 
invest in the technologies and operational procedures required for robust privacy 

 
90 Harrington, supra note 83, at 252. 
91 Cf. Cary Coglianese, Richard Zeckhauser & Edward Parson, Seeking Truth for Power: Informational 
Strategy and Regulatory Policy Making, 89 MINN. L. REV. 277 (2004).  
92 Geoffrey G. Parker, Georgios Petropoulos & Marshall W. Van Alstyne, Digital Platforms and Antitrust, 
in OXFORD HANDBOOK OF TRANSNATIONAL ECONOMIC GOVERNANCE (Eric Brousseau, Jean-Michel 
Glachant & Jérôme Sgard eds., 2022), https://www.bruegel.org/wp-content/uploads/2020/11/WP-2020-
06-1.pdf; Schrepel, supra note 1, at 6. Because many of the most significant businesses subject to antitrust 
scrutiny in the years ahead will have a transnational scope, international regulatory cooperation and 
even data-sharing will also be important. 
93 DONALD F. KETTL, ESCAPING JURASSIC GOVERNMENT: HOW TO RECOVER AMERICA’S LOST 
COMMITMENT TO COMPETENCE (2016); Jack Moore, The Crisis in Federal IT that’s Scarier than Y2K Ever 
Was, NEXTGOV (Nov. 20, 2015), http://www.nextgov.com/cio-briefing/2015/11/crisis-federal-it-rivals-
y2k/123908/; U.S. GOV’T ACCOUNTABILITY OFF., GAO-16-696T, Federal Agencies Need to Address Aging 
Legacy Systems: Hearing Before the H. Comm. on Oversight and Gov’t Reform, 114th Cong. (2016), 
https://www.gao.gov/assets/680/677454.pdf (testimony of David A. Powner, Director, Information 
Technology Management Issues). 
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and cybersecurity protection of all the data they use.94 Here, too, governments’ 
current capacity has generally been lacking, with vulnerabilities that antitrust 
authorities will need to guard against in their data operations.95  

 
Antitrust authorities will need adequate human capital and expertise as well.96 

Even though machine learning is usually referred to as artificial intelligence, self-
learning analysis still depends vitally on humans to program and structure 
algorithms, as well as to train, test, validate, and refine them.97 Antitrust 
authorities—which already do have staffs of economists and other analysts—will 
need to ensure that these analytic personnel also possess the latest data science 
skills as well as exhibit appropriate sensitivity to legal and ethical issues presented 
by governmental use of artificial intelligence. It will always be challenging to build 
or maintain an in-house workforce with cutting-edge analytic skills, as public sector 
organizations face inherent competitive disadvantages vis-à-vis the private sector 
when it comes to recruiting expertise.98 When antitrust authorities rely on private 
contractors and consulting firms to provide necessary human capital to support 
algorithmic antitrust tools, they must ensure that their procurement contracts 
protect their organizations and ensure sufficient access to information that may 
need to be disclosed in litigation or in response to other public oversight 
demands.99 

 
94 A variety of government computing systems have been breached in recent years by hackers, terrorist 
groups, or other countries. See, e.g., Davey Winder, New Orleans Declares State of Emergency Following 
Cyber Attack, FORBES (Dec. 14, 2019), https://www.forbes.com/sites/daveywinder/2019/12/14/new-orleans-
declares-state-of-emergency-following-cyber-attack/ (New Orleans); Kate Fazzini, Alarm in Texas as 23 
Towns Hit by ‘Coordinated’ Ransomware Attack, CNBC (Aug. 19, 2019), https://www.cnbc.com/2019/08/19/ 
alarm-in-texas-as-23-towns-hit-by-coordinated-ransomware-attack.html (Texas); Allison Ross & Ben 
Leonard, Ransomware Attacks Put Florida Governments on Alert, TAMPA BAY TIMES (June 28, 2019), 
https://www.tampabay.com/florida-politics/buzz/2019/06/28/ransomware-attacks-put-florida-governments-
on-alert/ (Florida); Sarah Hammond, Houston County Board of Education Website Hit With Ransomware 
Attack, 13WMAZ (Sept. 24, 2019), https://www.13wmaz.com/article/news/local/houston-county-board-of-
education-website-hit-with-ransomware-attack/93-dece14ea-9fef-4c3b-a913-ea972c5b46fc (Houston); 
Alan Blinder & Nicole Perlroth, A Cyberattack Hobbles Atlanta, and Security Experts Shudder, N.Y. TIMES 
(Mar. 27, 2018), https://www.nytimes.com/2018/03/27/us/cyberattack-atlanta-ransomware.html (Atlanta); 
Brendan I. Koerner, Inside the Cyberattack That Shocked the U.S. Government, WIRED (Oct. 23, 2016), 
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/. Data on private commercial 
activity—that is, the kind of data on which an antitrust regulator would rely for machine-learning 
analysis—might well prove to be an especially valuable target for hackers.  
95 Across the federal government in the United States, for example, “many agencies and critical 
infrastructure entities continue to face challenges in safeguarding their information systems and 
information.” U.S. GOV’T ACCOUNTABILITY OFF., Federal Government Needs to Urgently Pursue Critical 
Actions to Address Major Cybersecurity Challenges 10 (2021), https://www.gao.gov/assets/gao-21-
288.pdf. A presidential order acknowledges that “[t]he United States faces persistent and increasingly 
sophisticated malicious cyber campaigns that threaten the public sector …” and that “[t]he Federal 
Government must improve its efforts to identify, deter, protect against, detect, and respond to these 
actions and actors.” Exec. Order No. 14,028, 86 Fed. Reg. 26,633 (May 12, 2021). 
96 For a general discussion of the need to build up the human capital within antitrust agencies, see Alison 
Jones & William E. Kovacic, Antitrust’s Implementation Blind Side: Challenges to Major Expansion of U.S. 
Competition Policy, 65 ANTITRUST BULL. 227, 247–48 (2020).  
97 David Lehr & Paul Ohm, Playing with the Data: What Legal Scholars Should Learn About Machine 
Learning, 51 U.C. DAVIS L. REV. 653 (2017). 
98 On the challenges of meeting government agencies’ need for human expertise, see Coglianese, 
Optimizing Regulation, supra note 2, at 10; Eric Katz, The Federal Government Has Gotten Slower at Hiring 
New Employees for 5 Consecutive Years, GOV’T EXEC. (Mar. 1, 2018), https://www.govexec.com/management/ 
2018/03/federal-government-has-gotten-slower-hiring-new-employees-five-consecutive-years/146348/. 
99 See Cary Coglianese & Eric Lampmann, Contracting for Algorithmic Accountability, 6 ADMIN. L. REV. 
ACCORD 175 (2021); David S. Rubenstein, Acquiring Ethical AI, 73 FLA. L. REV. 747 (2021); Cary 
Coglianese & Lavi M. Ben Dor, Procurement as AI Governance, 2 IEEE TRANSACTIONS ON TECH. & 
SOC’Y 192 (2021). 
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B – Avoiding Legal Pitfalls 
 

Outside of the antitrust context, legal conflicts and public controversies have 
already arisen over governmental use of algorithmic tools.100 Antitrust authorities 
should prepare for similar disputes whenever they make a significant shift to 
relying on algorithmic tools.101 The range of legal issues that antitrust by algorithm 
will implicate parallel those that arise with administrative use of machine learning 
more generally: accountability, transparency, equality, privacy, and due process.102 
Although antitrust authorities, like other governmental entities, will likely often 
enjoy a practical, if not legal, advantage in court, their prospects of prevailing in 
court will depend on the law in the specific jurisdictions in which they reside, the 
particularities of their use of machine-learning algorithms, and the performance of 
specific algorithmic tools.103 

 
But to generalize: When these tools are used to support discretionary actions—

for example, general background research—algorithms will pose the least amount 
of legal risk for antitrust regulators. Similarly, when machine learning is used 
simply to identify potential firms to target for human follow-up and investigation, 
these uses are likely to escape judicial interference, especially when human-
gathered and human-analyzed evidence forms the actual basis for any 
subsequently imposed enforcement penalties.104 Perhaps for this same reason, 
wherever machine-learning algorithms are used merely to supplement, rather than 

 
100 In the United States, lawsuits have been filed challenging governments’ use of algorithms for 
making criminal justice determinations, evaluating the performance of public-school teachers, 
and administering social welfare programs. See State v. Loomis, 881 N.W.2d 749 (Wis. 2016); Hous. 
Fed’n of Teachers, Local 2415 v. Hous. Indep. Sch. Dist., 251 F. Supp. 3d 1168 (S.D. Tex. 2017); K.W. 
v. Armstrong, 298 F.R.D. 479, 494 (D. Idaho Mar. 25, 2014); Schultz v. Armstrong, No. 3:12-CV-00058-
BLW, 2012 WL 3201223 (D. Idaho Aug. 2, 2012). See generally Coglianese & Ben Dor, supra note 55. 
Around the world, public controversies have arisen over algorithms in facial recognition systems 
used by law enforcement officials, public university admissions decisions, and public welfare 
fraud software, among others. See, e.g., Rachel Metz, Facial Recognition Tech Has Been Widely 
Used Across the US Government for Years, a New Report Shows, CNN (June 30, 2021), https:// 
www.cnn.com/2021/06/30/tech/government-facial-recognition-use-gao-report/index.html; OFQUAL, 
AWARDING GCSE, AS, A LEVEL, ADVANCED EXTENSION AWARDS AND EXTENDED PROJECT 
QUALIFICATIONS IN SUMMER 2020: INTERIM REPORT (2020), https://www.gov.uk/government/ 
publications/awarding-gcse-as-a-levels-in-summer-2020-interim-report; Luke Henriques-Gomes, 
Robodebt Class Action: Coalition Agrees to Pay $1.2bn to Settle Lawsuit, THE GUARDIAN (Nov. 16, 2020), 
https://www.theguardian.com/australia-news/2020/nov/16/robodebt-class-action-coalition-agrees-
to-pay-12bn-to-settle-lawsuit; Justine N. Stefanelli, Netherlands District Court Rules Benefits Fraud 
Detection Tool Violates Human Rights Comments, AM. SOC. INT’L. L. (Feb. 6, 2020), 
https://www.asil.org/ILIB/netherlands-district-court-rules-benefits-fraud-detection-tool-violates-
human-rights; Allie Gross, Update: UIA Lawsuit Shows How the State Criminalizes the Unemployed, 
DETROIT METRO TIMES (Oct. 5, 2015), https://www.metrotimes.com/news-hits/archives/2015/10/ 
05/uia-lawsuit-shows-how-the-state-criminalizes-the-unemployed. 
101 For a general discussion of litigation risks associated with governmental use of algorithmic tools, see 
Coglianese & Lai, supra note 61, at 1336–39. 
102 Steven M. Appel & Cary Coglianese, Algorithmic Governance and Administrative Law, in THE 
CAMBRIDGE HANDBOOK OF THE LAW OF ALGORITHMS 162 (Woodrow Barfield ed., 2020). 
103 The United States, for example, is widely viewed as having a distinctively adversarial legalistic 
approach to public policy and administration. ROBERT A. KAGAN, ADVERSARIAL LEGALISM: THE 
AMERICAN WAY OF LAW (2d ed. 2019). Nevertheless, federal courts tend to defer to administrative 
agencies in highly technical or scientific matters, which challenges to the use of advanced algorithms in 
antitrust matters would certainly involve. ADRIAN VERMEULE, LAW’S ABNEGATION: FROM LAW’S EMPIRE 
TO THE ADMINISTRATIVE STATE 34 (2016). 
104 In the United States, enforcement discretion is treated as “committed to agency discretion” and hence 
not ordinarily reviewable by courts. Heckler v. Chaney, 470 U.S. 821 (1985). For a discussion of the 
reviewability of algorithmic selection of enforcement targets, see Coglianese & Lehr, supra note 55, at 
1169–70. 
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replace, any kind of human decision-making by antitrust officials, they will likely 
be less susceptible to reversal by the courts.105 

 
Transparency and due process considerations are nevertheless likely to loom 

large in any lawsuits that are filed challenging antitrust by algorithm. Machine-
learning algorithms can achieve highly accurate forecasts but it is not easy for 
humans to understand or intuitively explain how these algorithms reach their 
predictions.106 These algorithms also typically do not directly support causal or 
even correlative claims—that is, conclusions that businesses with certain 
characteristics or behaviors are more likely to engage in anticompetitive 
behavior.107 Nevertheless, in some countries it may be legally sufficient for antitrust 
authorities to release only relatively limited information about their algorithms—
limited, in some cases, to only the objective functions and general structures—or 
even to be exempt altogether from disclosing any information if the algorithms are 
used for law enforcement purposes.108 But even in these jurisdictions, the law may 
change, as it has in some countries to date. Under the 2016 European General Data 
Protection Regulation, for example, businesses that are subjected to algorithmic 
tools deployed by antitrust authorities will enjoy at least some right to an 
explanation of how these algorithms work.109 

 
Furthermore, some of the same concerns that stand behind calls for consumer 

protection regulation of artificial intelligence in the private sector may apply 
whenever the government uses algorithms for consequential purposes. If antitrust 
or consumer protection agencies demand disclosure of information related to 
private firms’ use of algorithms, they might reasonably expect that the public will 
demand similar disclosures of their own use of algorithms. It is unsurprising, for 
example, that the European Commission’s 2021 proposal for AI regulation would 
apply to both private and public sector uses of artificial intelligence.110 

 
Antitrust regulators may also face legal challenges related to algorithmic bias, 

especially should their own algorithms lead to outcomes that unfairly impose 
disproportionate impacts on businesses owned by women or members of certain 
racial or religious groups.111 The potential for algorithmic bias has given rise to a 

 
105 In the signature legal case in the United States raising due process challenges to governmental 
reliance of an algorithm, the Wisconsin Supreme Court rejected the challenge on the ground that the 
results from the algorithm were not determinative of the governmental judgment but merely an aid to 
a human decision. State v. Loomis, 881 N.W.2d 749 (Wis. 2016). 
106 Cary Coglianese & David Lehr, Transparency and Algorithmic Governance, 71 ADMIN. L. REV. 1, 16–18 (2019). 
107 Id. at 4–5, 16–17; see also Alicia Lai, Artificial Intelligence, LLC: Corporate Personhood as Tort Reform, 2021 
MICH. ST. L. REV. 597 (2021). 
108 Current federal law in the United States would fit this description of minimal disclosure, or even an 
exemption altogether, for algorithms used for law enforcement purposes. Coglianese & Lehr, supra note 
55; at 1205–13; Coglianese & Lehr, supra note 106; see also Christopher S. Yoo & Alicia Lai, Regulation of 
Algorithmic Tools in the United States, 13 J.L. & ECON. REG. 7 (2020). 
109 Council Regulation 2016/679, 2016 O.J. (L 119) art. 13. The GDPR also provides for a right to a human 
decision, which will limit European antitrust authorities’ ability to implement fully automated, human-
out-of-the-loop systems in the future. Id. at art. 22 (“The data subject shall have the right not to be subject 
to a decision based solely on automated processing, including profiling, which produces legal effects 
concerning him or her or similarly significantly affects him or her.”). 
110 Commission Proposal for a Regulation of the European Parliament and of the Council Laying Down 
Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative 
Acts, COM (2021) 206 final (Apr. 21, 2021). 
111 For a general discussion, see Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CAL. L. REV. 
671 (2016); Coglianese & Lehr, supra note 55. For an especially helpful treatment of algorithmic fairness in the 
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considerable degree of legal and public concern in other contexts, especially when 
machine-learning algorithms are trained on data that are already infused with 
human biases.112 Such concern is most palpable with algorithms trained on general 
law enforcement data, because crime data are infused with historical, human-
created biases.113 In addition, algorithmic bias is a particular concern in settings 
where individuals rather than organizations are directly affected or targeted by 
algorithms.114 For these reasons, algorithmic bias may seem, at least at first glance, 
less of a concern with the algorithmic tools likely to be used by antitrust 
authorities.115 Nevertheless, given the importance and salience of concerns of 
algorithmic bias, it would be prudent for antitrust analysts and decision-makers to 
address these concerns when pursuing antitrust by algorithm.116 

 
C – Ensuring Public Trust 

 
Antitrust by algorithm’s very promise for advancing the goals of competition 

law in a dynamic market environment makes it important for antitrust regulators 
to exercise prudence as they move forward with greater reliance on algorithmic 
tools. Although antitrust law and its administration might have once seemed 
largely a technical regulatory domain of interest to a specialized group of lawyers, 
economists, and academics, today the field of antitrust is much more publicly 
salient and contested than it has been for decades.117 When increased public interest 
in antitrust law is paired with the existence of palpable public concerns about the 
fairness and transparency of artificial intelligence,118 it is clear that regulators’ 
overarching approach to antitrust by algorithm must be thoughtfully executed with 
appropriate validation, transparency, and public consultation. If governmental 
efforts to pursue computational antitrust are too hastily pursued—or are 
mismanaged or inadequately overseen—unintended problems or controversy may 
set back progress in the responsible and effective deployment of computational 
antitrust.119  

 
criminal justice setting, see Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns & Aaron Roth, 
Fairness in Criminal Justice Risk Assessments: The State of the Art, 50 SOCIO. METHODS & RSCH. 3 (2018). 
112 Sandra G. Mayson, Bias In, Bias Out, 128 YALE L.J. 2218, 2122 (2019). 
113 Dorothy E. Roberts, Digitizing the Carceral State, 132 HARV. L. REV. 1695 (2019). 
114 See, e.g., VIRGINIA EUBANKS, AUTOMATING INEQUALITY: HOW HIGH-TECH TOOLS PROFILE, POLICE, AND 
PUNISH THE POOR (2018); SAFIYA UMOJA NOBLE, ALGORITHMS OF OPPRESSION: HOW SEARCH ENGINES 
REINFORCE RACISM (2018); FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT 
CONTROL MONEY AND INFORMATION (2015). 
115 In the United States, constitutional principles of equal protection probably do not stand in the way of 
federal antitrust authorities’ use of machine-learning algorithms—absent clear evidence of racial 
animus. See Coglianese & Lehr, supra note 55, at 1191–1205. 
116 Rebecca Kelly Slaughter, Janice Kopec & Mohammad Batal, Algorithms and Economic Justice: A Taxonomy of 
Harms and a Path Forward for the Federal Trade Commission, 23 YALE J. L. & TECH. 1 (2021), https://law. 
yale.edu/sites/default/files/area/center/isp/documents/algorithms_and_economic_justice_master_final.pdf. 
117 See Spencer Weber Waller & Jacob E. Morse, The Political Face of Antitrust, 15 BROOKLYN J. CORP., FIN. 
& COM. L. 75 (2020), https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3660946 (“After decades of 
languishing as a relatively technical legal specialty, issues of corporate concentration, income 
inequality, abuse of dominance and power, and the harms of lenient merger policy have returned as 
issues of public discussion and debate.”); Daniel A. Crane, Antitrust’s Unconventional Politics, 104 VA. L. 
REV. ONLINE 118, 120 (2018) (noting the “rising tide of calls for a radically different version of antitrust”). 
118 NICOLE GILLESPIE, STEVE LOCKEY & CAITLIN CURTIS, TRUST IN ARTIFICIAL INTELLIGENCE: A FIVE COUNTRY 
STUDY (2021), https://assets.kpmg/content/dam/kpmg/au/pdf/2021/trust-in-ai-multiple-countries.pdf 
(reporting that in five countries, including the United States, only 28 percent of survey respondents overall 
are willing to trust artificial intelligence and no more than about 60 percent have confidence that business 
and government can “use and regulate antitrust and govern AI in the best interest of the public”). 
119 For background on public trust as it pertains to artificial intelligence, see Brian Stanton & Theodore 
Jensen, National Institute of Standards and Technology, Trust and Artificial Intelligence, NISTIR 8330 
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In developing and relying on algorithmic tools, antitrust authorities should also 
account for emerging principles and best practices for public sector entities’ 
responsible use of artificial intelligence. As the Organization for Economic 
Cooperation and Development (OECD) has noted, uses “of AI in the public sector 
present challenges, as public administrations must ensure a high standard of 
transparency and accountability for their actions, especially those that directly 
impact individuals.”120 The OECD has adopted a series of principles for the 
responsible use of artificial intelligence that, among other things, calls upon 
government officials to “commit to transparency and responsible disclosure 
regarding AI systems” and “to enable those affected by an AI system to understand 
the outcome” that it generates and challenge any adverse decisions that result from 
its use.121 Similar recommendations and guidance have been offered around the 
world in recent years by governmental authorities, industry groups, and 
nongovernmental standard-setting bodies.122 

 
In moving toward antitrust by algorithm, government officials should begin by 

engaging in their own basic decision analysis before launching into the design and 
development of a tool or system that relies on machine-learning analysis.123 Most 
importantly, they should focus on whether a contemplated system or tool would 
likely improve their oversight of industry.124 In other words, they should ask: What 
might be some of the strengths, weaknesses, opportunities, and threats associated 
with a proposed AI system or tool?125 It will almost certainly be prudent for antitrust 
authorities to start off small, gaining experience with such tools on uses with lower 
stakes before attempting to apply them to matters of high stakes. 

 
Algorithmic impact assessments and algorithmic auditing are increasingly 

considered to be best practices in both private and public sector deployment of 

 
(Dec. 2020), https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931087. For considerations of due 
process in the antitrust context, see Christopher S. Yoo, Thomas Fetzer, Shan Jiang, & Yong Huang, Due 
Process in Antitrust Enforcement: Normative and Comparative Perspectives, 94 S. CAL. L. REV. 843 (2021). 
120 ORG. FOR ECON. COOP. & DEV., STATE OF IMPLEMENTATION OF THE OECD AI PRINCIPLES: INSIGHTS 
FROM NATIONAL AI POLICIES 43 (OECD Digital Economy Papers No. 311, June 2021), https://www.oecd-
ilibrary.org/docserver/1cd40c44-en.pdf?expires=1636518988&id=id&accname=guest&checksum=50BA2 
B2E7FF6205F54DD5593F6E2DBD7. 
121 ORG. FOR ECON. COOP. & DEV., RECOMMENDATION OF THE COUNCIL ON ARTIFICIAL INTELLIGENCE (May 
21, 2019), https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449. 
122 See, e.g., U.S. GOV’T ACCOUNTABILITY OFF., ARTIFICIAL INTELLIGENCE: AN ACCOUNTABILITY FRAMEWORK FOR 
FEDERAL AGENCIES AND OTHER ENTITIES (June 2021), https://www.gao.gov/products/ gao-21-519sp; ADMIN. CONF. 
OF THE U.S., Statement #20, Agency Use of Artificial Intelligence, 86 Fed. Reg. 6616 (Jan. 22, 2021), https://www. 
acus.gov/research-projects/agency-use-artificial-intelligence; INDEP. HIGH-LEVEL EXPERT GRP. ON A.I., EUR. 
COMM’N, ETHICS GUIDELINES FOR TRUSTWORTHY AI (Apr. 8, 2019), https://op.europa.eu/en/publication-detail/-
/publication/d3988569-0434-11ea-8c1f-01aa75ed71a1; GOV’T OF CAN., Directive on Automated Decision-Making 
(2021), https://www.tbs-sct.gc.ca/pol/doc-eng.aspx?id=32592; INT’L ORG. FOR STANDARDIZATION, Information 
technology—Artificial Intelligence—Overview of Trustworthiness in Artificial Intelligence, ISO/IEC TR 
24028:2020 (2020), https://www.iso.org/standard/77608.html?browse=tc; U.K. COMM. ON STANDARDS IN PUB. 
LIFE, ARTIFICIAL INTELLIGENCE AND PUBLIC STANDARDS (Feb. 10, 2020),  https://www.gov.uk/government/ 
publications/artificial-intelligence-and-public-standards-report; ORG. FOR ECON. COOP. & DEV., State of 
Implementation, supra note 120; Carlos Ignacio Gutierrez & Gary E. Marchant, Soft Law 2.0: Incorporating 
Incentives and Implementation Mechanisms into the Governance of Artificial Intelligence, OECD: OECD.AI POL’Y 
OBSERVATORY (July 13, 2021); Carlos Ignacio Gutierrez & Gary E. Marchant, A Global Perspective of Soft Law Programs 
for the Governance of Artificial Intelligence (2021), https://papers.ssrn.com/sol3/ papers.cfm?abstract_id=3855171.  
123 For a discussion of the pitfalls to which human decision-making can fall prey and the need to develop 
organizational disciplines to avoid them, see Coglianese & Lai, supra note 61. 
124 Id. 
125 DARRELL M. WEST & JOHN R. ALLEN, TURNING POINT: POLICYMAKING IN THE ERA OF ARTIFICIAL 
INTELLIGENCE 200 (2020).  
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artificial intelligence, and they should likewise become part of antitrust 
regulators’ internal processes for deciding to design and deploy algorithms.126 
These processes should include documented efforts to verify that the algorithms 
are working as designed and to validate that they are achieving in practice the 
goals established for them. In setting goals and validating an algorithm’s 
performance against these goals, government officials may find it useful to 
consult with members of the public to provide transparency about their plans.127 
Public engagement surrounding algorithmic design can help government 
officials anticipate undesirable consequences and avoid unduly narrow 
thinking.128 Even when authorities use algorithmic tools for law enforcement 
purposes that counsel against extensive transparency and public consultation, it 
is still possible for officials to ensure robust internal review processes, establish 
expert peer reviews under confidentiality agreements, and even disclose certain 
general information to the public.129  

 
By adhering to best practices throughout all stages of the design and 

deployment of algorithmic tools and systems, antitrust authorities can more likely 
ensure that they can reap the advantages that come from these tools and systems 
while also maintaining the trust of the business community and the broader 
public.130 In other words, moving responsibly toward antitrust by algorithm will 
necessitate more than just making technological advances. It will require meeting 
the institutional challenges involved in building the right kind of human expertise, 
ethical practices, and organizational processes surrounding governmental use of 
artificial intelligence. Meeting these challenges should also help reduce any legal 

 
126 Private business already recognizes the need to think carefully about and thoroughly vet the design 
and development of new algorithmic tools. See Statement by Andrew Moore, Director of Google Cloud 
AI, Harnessing Transformation Technologies Symposia Series: How Artificial Intelligence and Machine 
Learning Transform the Human Condition (July 20, 2021), https://web.cvent.com/event/17a0dfb8-3916-
4a24-b4b7-70a2b0f08804/websitePage:645d57e4-75eb-4769-b2c0-f201a0bfc6ce. For a video of Andrew 
Moore’s remarks, see HOW ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TRANSFORM THE HUMAN 
CONDITION, https://www.youtube.com/watch?v=HyuqxdfC4oE (last visited March 13, 2022). For 
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risks that antitrust agencies may find associated with the transition to computational 
antitrust. 
 

Conclusion 
 
The digital technologies transforming private markets present daunting 

challenges for all regulators. But perhaps nowhere more than in the realm of 
antitrust do the rapid changes created by digital platforms, dynamic pricing 
algorithms, and other new technologies present a more direct challenge to 
governmental performance. Today’s technological advances are leading to markets 
rife with possibilities for increasingly subtle and evasive forms of anticompetitive 
behavior by private firms. If antitrust authorities simply maintain their operational 
and analytic status quo, they are likely to be left behind by private sector innovation 
and will fail to fulfill their public mandates. 

 
But just as technological advances present new problems for antitrust 

authorities, they also present potential new solutions that can assist antitrust 
regulators in identifying and addressing anticompetitive behavior. To implement 
these new machine-learning solutions with success, antitrust authorities must 
build up their organizational capacity to deploy algorithms effectively and 
responsibly. An increasing shift to the algorithmic administration of antitrust law 
and policy will not be easy and may pose some risk of new legal challenges. But 
with thoughtful design and development, along with appropriate transparency and 
public engagement, antitrust authorities should be able to build public confidence 
in, and withstand judicial scrutiny of, their use of “antitrust by algorithm.” 
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